
Optics Communications 470 (2020) 125750

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Design and implementation of a three-lane CA Traffic Flow model on ternary
optical computer
Zhang Sulan a,b, Shen Yunfu b,∗, Zhao Zheyu b

a College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang, 314000, China
b School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

A R T I C L E I N F O

Keywords:
Cellular automata
Traffic flow model
Ternary optical computer
MSD adder

A B S T R A C T

The ternary optical computer (TOC) has the characteristics of numerous bits, bit-wise allocation, bit function
reconstruction, parallel calculation, and easy extension of the processor. With the successful running of the
adder on a 192-bit prototype system SD16 (an abbreviation of Shanghai Daxue’s machine 2016) of the TOC
in Shanghai University, the theory and technology of the reconfigurable optoelectronic hybrid processor have
matured and the great advances have been made in this field. In this paper, based on cellular automaton,
a three-lane traffic flow model is studied and applied on a ternary optical computer. The three-lane traffic
flow model is designed and the steps for implementing the model on SD16 are provided in detail. An example
of the three-lane traffic flow model is given to verify the correctness of the model and the feasibility of
the implementation method. It takes advantage of the numerous data bits, reconfigurable operation bits, and
parallel computing of the TOC.

1. Introduction

Cellular automata (CA) is a grid dynamic system in which time,
space and state are discrete, spatial interactions and causality relation-
ship in time are local. Each variable takes only a limited number of
states. The model meeting these rules can be regarded as a cellular
automaton model. It generally does not have a strictly defined physical
equation or function form, but consists of a series of rules.

CA was proposed to simulate the self-replication function of bi-
ological systems by the father of computers, von Neumann, in the
early 1950s [1]. In 1986, M. Cremer and J. Ludwig applied CA to the
research of vehicle traffic [2]. The most basic one-dimensional model
in the cellular automaton traffic flow model is the 184 CA model [3,4],
which uses elements from grid point chain of one-dimension to simulate
vehicles on the road. The state of the vehicle at the next moment is
completely determined by the state of the vehicle itself and the two grid
points before and after the vehicle. In 1992, Nagel K. and Schrecken-
berg M. proposed a cellular automaton model (NS model), considering
the possibility of a car’s gradually restricted forward shifting and
random reverse direction shifting [5].

In recent years, with the increasing demand for high-performance
computing in the social economy, people’s enthusiasm for low-power,
high-performance computers is becoming more and more intense. It
makes researchers pay more and more attention to the research of
new type of computers, such as quantum computers [6,7], biological
computer [8], optical computer, etc. [9–11].

∗ Corresponding author.
E-mail address: yfshen@shu.edu.cn (Y. Shen).

Optical computers have certain advantages in data width and par-
allel carry-free addition, etc. Therefore, they have attracted much
attention. The research in photoelectric hybrid ternary optical com-
puter (TOC) in Shanghai University is a more promising field. On
March 18, 2017, the research team successfully operated a 36 bit
MSD adder based on T, W, T′, W′, and T2 transformations (referred
to as TM-MSD adder) [12], marking that the theory and technol-
ogy of the optical reconfigurable photoelectric hybrid processor have
matured, and the manufacturing technology has been feasible [9–
11,13]. The TOC has more advantageous than traditional electronic
computer systems in solving problems that require more resources and
repetitive computations.

At present, there are more and more researches on the potential
applications for the TOC. The algorithm design of vector matrix mul-
tiplication [14,15] is studied, iterative division algorithm for MSD
number is designed and implemented [16]. The FFT algorithm is stud-
ied by using huge data bits of optical calculations with less clock
cycles [17]. The implementation method of the DFT algorithm is stud-
ied by using bitwise allocation and reconfigurability of processor bits
of the TOC in the literature [18].

From the characteristics that all the cells of a cellular automaton
can be calculated in parallel, it is obviously advantageous to apply it
to the application research with the TOC.

https://doi.org/10.1016/j.optcom.2020.125750
Received 18 February 2020; Received in revised form 12 March 2020; Accepted 14 March 2020
Available online 19 March 2020
0030-4018/© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.optcom.2020.125750
http://www.elsevier.com/locate/optcom
http://www.elsevier.com/locate/optcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2020.125750&domain=pdf
mailto:yfshen@shu.edu.cn
https://doi.org/10.1016/j.optcom.2020.125750


S. Zhang, Y. Shen and Zhao Z. Optics Communications 470 (2020) 125750

Fig. 1. One-dimension CA.

Fig. 2. Typical two-dimension CA.

2. The related theory of CA and the TOC

2.1. Cellular automata

The cellular automaton consists of basic elements and cell states.
The basic elements have four parts: cell, cell space, neighbor, and trans-
fer rule (or function). Therefore, the CA can be regarded as consisting
of a cell space and a transformation function defined on the space [4,5].

The cell is the most basic component, distributing as lattice points in
discrete 1-dimension, 2-dimension or high dimensional space. It has a
discrete and finite state space. Given a transfer function f of the cellular
automaton model and the initial values, the changes of the cells at the
next moment are related to the states of the cells at the current time
and its neighboring positions. The cell states can be in binary forms,
such as (0, 1), (live, dead), (black, white), etc., or in ternary forms, or
in some finite integer set S or in a certain interval. A set of spatial lattice
points of a cell distribution is called as a cell space. The boundary rules
of the cellular space are generally periodic, fixed and reflective, and so
on. The CA converts with discrete time values. If the time step is d𝑡 = 1,
then 𝑡 + 1 is the next time. 𝑡 = 0 is the initial time.

One-dimension CA is a linear structure, as shown in Fig. 1, and the
transformation function at each position is 𝑥′i = 𝑓 (𝑥i+1, 𝑥i, 𝑥i−1), which
has 28 states.

Two-dimension CA is a grid structure, as shown in Fig. 2, and
its transfer function is 𝑥′ij = 𝑓 (Nij), where Nij is the set of neighbor
information of 𝑥ij.

The basic operation of the CA model M of scale m × n is as follows:

(1) For some kind of grid division of M, the next state 𝑥′ij of each cell
𝑥ij depends on the states of some cells adjacent to 𝑥ij, 𝑥′ij = 𝑓 (Nij),
where Nij is a set of neighbor elements ;

(2) The states of all cells can be calculated in parallel;
(3) Evolutionary calculations finish until entering a stable state or

the specified step k.

Since the next state of a cell is related to its neighbor states, its transfer
rule is defined in the local scope of the space. Therefore, the neighbor
rules must be defined firstly.

The transfer rule is a dynamic function that determines the states of
the cells at the next moment based on the current states of the cells and
their neighbors, that is, a state transfer function. It can be expressed as
formula (1):

S𝑡+1i = 𝑓 (S𝑡i ,S
𝑡
N) (1)

Where S𝑡i is the state of the cell i at time 𝑡 and S𝑡N is the state of the
neighbor N. Here, f is called as a local map or a local rule of a CA.

Therefore, the CA system M can be represented by a tuple M = (Ld,
S,N, f ), where Ld is a cell space, S is a finite state set, d is a spatial

Table 1
One set of logical transformations of carry-free MSD addition.
S1 S2 J1 J2 J3

b a b a
𝑠1

𝑠2 𝑠1
𝑠2 𝑗2

𝑗1
0 1 u 0 1 u 0 u 0 u 0 u

0 0 1 0 0 0 u u 0 0 u 0 0 1 0 0 u
1 1 1 0 1 u 0 0 1 0 0 1 1 0 1 1 0
u 0 0 u u u 0 0 u 0 u u u 0 u u 0

Table 2
Simplified Logical transformations of SJ-MSD adder.
S1 S2 J12 J3

b A b a
𝑠1

𝑠2 𝑗2
𝑗1

0 1 U 0 1 u 0 V H 0 u

0 0 1 0 0 0 u u 0 0 u 1 0 0 u
1 1 1 0 1 u 0 0 1 1 0 0 1 1 0
u 0 0 u u u 0 0 u u u 0 u u 0

dimension, and N represents a set of the combination of all cells in the
neighborhood (including the central cell), f is the local conversion rule
(or function). In this paper, we selects the number of neighbors 3d − 1
according to the actual situation.

2.2. The principle of SJ-MSD adder

As early as in 2010, the research team began to consider the
problem of parallel carry-free modified signed-digit (MSD) addition.
By examining the three-step TW-MSD addition transformation T, W,
T1, W1, T2, Prof. Yunfu Shen obtained a set of simpler parallel carry-
free three-step MSD addition transformation rules in 2013, as shown
in Table 1. In 2016, Shen described the characteristics of the parallel
carry-free three-step MSD addition, and gave sets of all the transfor-
mation rules that satisfy parallel computing of the MSD addition in
three-step thoroughly. These MSD addition rules provide a theoretical
basis for the operator selections of the TOC. Some were applied in the
design of actual optical computer processors.

The Shen–Jiang modified signed-digit (SJ-MSD) adder is named
after Yunfu Shen and Ph.D Jiabao Jiang. It is based on the MSD addition
rules shown in Table 1 by combining the sub-tables J1 and J2, as shown
in sub-table J12 of Table 2.

Here, we use the vertical polarized light (V), horizontal polarized
light (H) and null light in optical implementation.

SJ-MSD addition consist of 5 ternary logical transformations (SJ
transformations) and a set of operation rules (SJ rule). The 5 transfor-
mations are in turn the transformation S1,S2, J1, J2, J3 shown in Table 1.
SJ rule for k-bits MSD numbers a and b is described as follows [19]:

Let 𝑎 and 𝑏 be two MSD numbers, 𝑎 = 𝑎𝑘−1 ⋯ 𝑎1𝑎0, 𝑏 = 𝑏𝑘−1 ⋯ 𝑏1𝑏0.
Step 1: Implementing S1transformation on data a and b bit by bit,

adding one 0 behind the transformation result 𝑠′1 to obtain (𝑘 + 1) bits
value 𝑠1. At the same time, implementing S2 transformation on data a
and b bit by bit too, adding a 0 in front of the transformation result 𝑠′2
to obtain (𝑘 + 1) bits value 𝑠2.

Step 2: Implementing J1 transformation on the low k bits both 𝑠2
and 𝑠1 bit by bit, adding a 0 behind the result 𝑗′1 to obtain (𝑘 + 1) bits
value 𝑗1. At the same time, implementing J2 transformation on 𝑠2 and
𝑠1 bit by bit, and obtain (𝑘 + 1) bits value 𝑗2.

Step 3: Implementing J3 transformation on 𝑗1 and 𝑗2 bit by bit,
obtaining (𝑘 + 1) bits value 𝑗3 = 𝑎 + 𝑏.

Then s is the sum of a and b.
A SJ-MSD adder in SD16 is constructed according to Table 2 [19].

We omit its details here. In this way, only 4𝑛 + 2 processor bits are
needed to complete the addition of the n bits MSD number a and b.

2



S. Zhang, Y. Shen and Zhao Z. Optics Communications 470 (2020) 125750

3. Three-lane CA traffic flow model

The multi-lane traffic flow model based cellular automaton evolved
from the NS model [20–22]. The three-lane CA traffic road system
consists of three parallel and co-directional lanes, representing by lanes
1, 2, and 3, each lane is composed of a one-dimensional discrete lattice
chain of length L, and each grid on the lattice chain represents a cell,
each cell has two states: 0 or 1, where 0 means null and 1 means that
it is occupied by a car. The maximum speed of the vehicle in each lane
is Vmax, and the motion direction of the vehicle on each lane is fixed
(such as from south to north, or from left to right). The speed of each
vehicle is determined by the interval [0, Vmax] according to the real
situation. We use the following variables in the paper:

Vji(𝑡): the speed of the ith car from the time 𝑡−1 to 𝑡 in the jth lane;
dji(𝑡): the distance between the ith car and the front car at time 𝑡 on

the jth lane;
𝑥ji(𝑡): the position of the ith car on the jth lane at time 𝑡;
K0: the probability of randomly generating a car;
K1: the acceleration probability of each vehicle;
K2: the random slowing probability;
K3: changing lane probability for each lane;
Vh: the driver’s desired speed.
fdj,i: the front distance of the vehicle on lane j in corresponding

position relative to the vehicle in lane i;.
bdj,i, bVj,i: the rear distance and the speed of the nearest car on lane

j in corresponding position relative to the vehicle in lane i respectively.
In the evolution of the model, each evolution is divided into the

following three steps.

(1) Update principles of the speed for each vehicle
Deceleration:

If Vji(𝑡) ≥ dji(𝑡), then Vji(𝑡 + 1) = dji(𝑡) − 1, according to the
probability K2;
or Vji(𝑡 + 1) = dji(𝑡), according to the probability 1 − K2.
If Vji(𝑡) < dji(𝑡)) and Vji(𝑡) = Vmax, then Vji(𝑡+1) = Vmax−1,
according to the probability K2;
or Vji(𝑡 + 1) = Vmax, according to the probability is 1 − K2.

Acceleration:

If Vji(𝑡) < Vmax then Vji(𝑡 + 1) = Vji(𝑡), according to the
probability K1;
or Vji(𝑡+1) = Vji(𝑡)+1, according to the probability 1−K1.

(2) Update rules of each vehicle location
𝑥ji(𝑡 + 1) = 𝑥ji(𝑡) + Vji(𝑡 + 1);

(3) Change lane rules for each vehicle

After the vehicle running in each lane, it will change lanes according to
the driving needs. But it must meet the overtaking principle and safety
principles.

(1) The changing lane rule of the vehicle in lane 1. When the
distance d1i of the current ith car of the first lane is smaller
than the expected value Vh of the driver, the changing lane
consciousness is generated. If d1i is smaller than the distance fd2,1
of the corresponding position of the second lane in front, and the
rear distance bd2,1 of the second lane in corresponding position
is greater than or equal to the speed bV2,1 of the nearest neighbor
vehicle behind in the second lane, the current vehicle in the first
lane is transferred to the second lane with the probability q,
keeping its current speed.

(2) The changing lane rule of the vehicle in lane 2. When the
distance d2i of the current position of the ith car in the second
lane is less than the expected value Vh, the changing lane
consciousness is generated.

(1) Turn-left rule: If d2i < fd1,2 and bd1,2 > bV1,2, that is, if d2i is
smaller than the distance fd1,2, when the rear distance bd1,2 of
the corresponding position of one lane is greater than or equal
to the speed bV1,2 of the nearest neighbor vehicle behind on
the first lane, the current vehicle on the second lane can be
transferred to the first lane with the probability q, keeping its
current speed.

(2) Turn-right rule: If d2i ≥ fd1,2, and fd3,2 > d2i, bd3,2 > bV3,2, the
current vehicle in the second lane can be transferred to the third
lane with the probability q, keeping its current speed.

(3) The changing lane rule of the vehicle in lane 3. When d3i <
Vh, the changing lane consciousness is generated. If d3i < fd2,3,
and bd2,3 ≥ bV2,3, the current vehicle in the third lane can be
transferred to the second lane with the probability q. After the
vehicle turning to the second lane, the vehicle speed remains
unchanged.

4. Algorithm design of three-lane traffic flow on the TOC

4.1. Three-lane traffic flow design based on the TOC

Giving a section of road with the length L kilometers, suppose that
one kilometer is regarded as one cell and the maximum speed is Vmax.
Denote the position and its speed of the ith car on the jth lane by 𝑥ji,
and Vji respectively, 0 ≤ 𝑥ji ≤ L, 0 ≤ Vji ≤ Vmax. Let L′ = L + Vmax and
w = ⌈log2(L+Vmax)⌉. L′ is the maximum length needed to be considered
for this CA.

Any position between 0 and L′ can be represented by a binary
number of w bits.

In the CA traffic flow model, three lanes have 3L grid points, which
the position of each grid point is regarded as a cell. The new status
of every cell involves at most 2 + Vmax cells, as shown in Fig. 3. The
position, speed and displacement of the vehicle need to be calculated.
They just need addition. So each car is equipped with an adder of w
bits.

Suppose that the ternary optical processor has a total of 𝑚 bits.
According to the calculation process of the SJ-MSD adder, the MSD
adder of w bits only needs 4w + 2 processor bits. Therefore, we can
construct p = ⌈m∕(4 ∗ w + 2)⌋ small adders within the m-bit ternary
optical processor. That is, the position states of p vehicles can be calcu-
lated simultaneously. For the p adders of w bits, the task management
software of host computer performs the allocation of processor bits for
each adder. Let G be the start position of the first adder in the processor.

Denote Pos [0] = G, Pos[i + 1] = Pos[i] + 4w + 2, i = 0, 1, . . . , p
− 2. Then the start bit of the ith adder is Pos[i].

Suppose that there are num vehicles on the road. Then it will
need ⌊𝑛𝑢𝑚∕p⌋ calculation to update the information of these vehicles,
and each calculation is completed in parallel. The image information
calculated of the p cars is stored in a BUF. The updated position
information of all the vehicles is obtained after ⌊𝑛𝑢𝑚∕p⌋ calculation.
The information in the register is transmitted to the upper computer
for decoding, and the information of all vehicle positions is obtained.

4.2. Implementation process of three-lane traffic flow on a ternary optical
processor

SD16 is a photoelectric hybrid computer, and the structure of
computing-data model is shown in Fig. 4 [23]. It can be seen from Fig. 4
that it consists of two parts: an upper computer (a master computer)
and a lower computer (a slave computer). The master computer is a PC
with a traditional operating system, which is responsible for running
task management software and communicating with users. The task
management software is responsible for generating the reconstruction
information and calculation data information of the slave computer (the
optical processor) [24]. The reconstruction information makes the TOC
operator to reconstruct the various calculators required by the user,

3



S. Zhang, Y. Shen and Zhao Z. Optics Communications 470 (2020) 125750

Fig. 3. Three-lane traffic flow Model CA.

Fig. 4. Computing-data model.

and the calculation data information is used for calculation on the TOC
operator. The calculated result beam is sent to the TOC decoder by
the slave computer control software to obtain the user’s binary result
data. The calculation result is returned to the user through the task
management software [23–25].

In the three-lane CA traffic flow model, each vehicle has three
attributes: acceleration, displacement, and lane change. The master
computer is responsible for generating the vehicle grid position infor-
mation that the salve computer needs to calculate, and sends the grid
information to the salve computer for calculation. The salve computer
receives the calculation information of each grid point transmitted from
the master computer, calculates the speed and displacement of the ve-
hicle, obtains the result information, and returns the result information
to the master computer for decoding to obtain the binary result data.

Therefore, only the adder needs to be designed on the TOC, and the
lane change is completed by the master computer. The three-lane traffic
flow design based on the ternary optical computer, the workflow is as
follows:

(1) Constructs the whole road L with the task management software
in the master computer;

(2) Determine the bit number w of the required optical adder ac-
cording to the road length L and the maximum speed Vmax;

(3) Determine the number p of small adders with w bits that can be
reconstructed in optical processor by p = ⌈m∕(4 ∗ w + 2)⌋;

(4) Allocate processor bits for the p adders in master computer, and
complete the reconstruction of these p adders;

(5) Generate a vehicle (car) randomly, and initialize its speed v, the
lane and the displacement S. And arrange the vehicle randomly
on lane 1, 2 or 3 according to the probability;

(6) Assign an adder to the newly generated vehicle;
(7) Find all the vehicles on the road, and for each vehicle at time 𝑡

determine the information of distance before and after it, speed
and position;

(8) Determine if the vehicle is shifting or not, and determine its
acceleration according to the information of distance before and
after it, speed and position at time 𝑡;

(9) Send the speed and acceleration of each vehicle at time 𝑡 to the
optical processor of the slave computer, and calculate the speed
of each vehicle at time 𝑡 + 1;

(10) Send the speed and position information of each vehicle at t+1
to the corresponding adder in the optical processor to calculate

and complete the update of the corresponding position informa-
tion. The position information of the p vehicles can be updated
simultaneously, and these information can be stored in the buffer
BUF. Repeat the process until all vehicles complete the update
of the location information.

(11) Denote the storage information for empty position with null or
0;

(12) Send the image information of 3L positions to the master com-
puter for decoding, and finally generate a binary result of posi-
tion information.

5. Implementation and analysis of three-lane traffic flow problem
on SD16

5.1. Brief introduction to SD16

The TOC uses two polarized light with orthogonal polarization
states and a null light state to express information, and uses such
device as liquid crystal pixel array to rotate the polarization direction
of light in order to perform light state conversion. It can have millions
of processor bits to realize various operations.

SD16 is a ternary optical reconfigurable photoelectric hybrid pro-
cessor developed by Shanghai University in 2016. SD16 consists of
two parts: the master computer and the slave computer. The master
computer is a traditional electronic computer with 64 bit windows 7
operating system, Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz, 4 GB.
The slave computer is ternary optical processor. The processor bits of
the slave computer can be divided into several sections according to
the needs of the user, and each section can be used to run different
programs independently; each processor bit can be changed its calcu-
lation function at any time according to the needs of the user. SD16
can add 64 basic operation modules, one of which has 192 processor
bits, reaching 12288 processor bits. At present, each processor bit can
be reconstituted into a bit of any three-valued (including two-valued)
logical operator, or 4n + 2 processor bits can be used to construct an
n-bit parallel carry-free SJ-MSD adder. For a module of 192 bit SD16,
it can constitute up to 47 bit three-step SJ-MSD adder. The appearance
of the prototype SD16 is shown in Fig. 5.

In the slave computer of SD16, we use a liquid crystal board LCD
with 576 pixels to serve as a processor, and the pixel bits are arranged
in the form as Fig. 6, where three adjacent pixels in the same row form a
processor bit. To observe the result data easily, we divide the LCD board

4



S. Zhang, Y. Shen and Zhao Z. Optics Communications 470 (2020) 125750

Fig. 5. The prototype SD16 of the TOC.

Fig. 6. Liquid crystal divisions of SD16.

into two parts: the left and right parts, and number each processor
bit from 0 to 191. The number of each pixel of the LCD is shown in
Fig. 6. Each pixel can output no light, horizontally polarized light or
vertically polarized light. According to our design for the processor,
the three adjacent pixels in the same row are denoted by W (null
light), V (vertically polarized light) and H (Horizontally polarized light)
respectively. There is only one output (W, V or H) and it cannot have
two outputs V and H at the same time for the same processor bit.

5.2. Implementation of an instance on SD16

As an example, suppose the length of a section of highway is L = 80
km and the maximum speed Vmax is set to 12 units. Hence, the position
range of each vehicle is 0 ≤ xji ≤ 80 and the speed range of each vehicle
is 0 ≤ Vji ≤ 12, and L′ = L + Vmax = 92 and w = ⌈log2 L′

⌉ = 7. It means
that it requires 7 bits to represent the displacement value.

In our SJ-MSD adder, J1 and J2 transformations can be finished in
different pixels of the same processor bit [19]. Now each position on
the road is regarded as a cell which is corresponding to a small MSD
adder with 7 bits. Here, we design all the small SJ-MSD adders with 8
bits. So, each adder needs 4 ∗ 8 + 2 = 34 processor bits. We can equip
with ⌈192∕34⌋ = 5 adders, which can calculate the position status of 5
vehicles at the same time.

In this example, the processor bit allocation on SD16 is as follows.
Let G = 0. Then Pos [0] = 0, Pos[i + 1] = Pos[i] + 34, i = 0, 1, . . . , p
− 2. So the start position of the ith adder is Pos[i]. The start positions

of the five small adders are 0, 34, 68, 102, and 136 respectively. After
the allocation of processor bits, the configuration image of processor
bits in SD16 is formed according to the specific function of each bit,
as shown in Fig. 7. The five districts A, B, C, D, and E in this image
are divided according to the corresponding adders. For example, eight
AS1 and AS2 represent the 8 bit input data S1 and S2 of the first adder
respectively. Similarly, AJ1 and AJ2 indicate the results of AS1 and AS2
after the transformation of J1 and J2, and AJ3 is the result of AJ1 and
AJ2 after J3the transformation, that is, AJ3 is the sum of AS1 and AS2.

5.3. Experimental results and analysis

The experiment is carried out on SD16. Assume that the vehicle is
randomly generated in each lane with equal probability K0. Here, we
let K0 = 0.9, K1 = 0.7, K2 = 0.5, K3 = 0.3. And let Vh = 3, which
means 30 km per hour, and Vmax = 5, which means 50 km per hour.
Before the beginning of the system, we construct five 8 bit adders, each
of which has two input data: the augend a (the position of the vehicle
at time 𝑡, xji(𝑡)) and the addend b (the speed of the vehicle at time 𝑡,
Vji(𝑡)). The result in this example represents the displacement value of
the corresponding vehicle.

When time 𝑡 is 0, the first car was randomly generated, and the first
adder was assigned to the car at this time. The position of the vehicle
𝑥31(0) is 0, and the speed V31(0) is 1. Therefore, for the first vehicle,
the augend a is 0, and the addend b is 1. The augends and addends of
the other four adders are 0, that is, the input data of the five adders
in the first screen are: (1) 𝑎 is 0, 𝑏 is 1; (2) 𝑎 is 0, 𝑏 is 0; (3) 𝑎 is 0, 𝑏
is 0; (4) 𝑎 is 0, 𝑏 is 0; (5) 𝑎 is 0, 𝑏 is 0. The screenshot of the vehicle
running state on the road at the next moment is shown in Fig. 8, and
the corresponding calculation result on the TOC is as shown in Fig. 9.

It can be seen from Fig. 7 that the result values are from the 25th to
33rd bits on the liquid crystal board, and the result is displayed from
the high to the low. It can be seen from Fig. 8 that the result value of
the first adder is (00000001u)MSD = 1. Where the augend a is 0, the
addend b is 1, 0 + 1 = 1, the calculation result is correct.

When time 𝑡 is 1, the second car was randomly generated, at which
time the second adder was assigned to the car. The position X11(1) of
the vehicle 2 is 0, and the speed V11(1) is 2, which means that the
augend 𝑎 is 0 and the addend 𝑏 is 2 for the adder of the second car.
At the moment, for the first vehicle, the position X31(1) is 1, the speed
V31(1) is 2. The augend and addend of the other three adder are all.
That is, the input data 𝑎 of the five adders at the second time are 1,
0, 0, 0, 0 respectively, the input data 𝑏 is 2, 2, 0, 0, 0 respectively.
The screenshot of electronic computer at the next moment is shown

5



S. Zhang, Y. Shen and Zhao Z. Optics Communications 470 (2020) 125750

Fig. 7. Configuration image of processor bits in SD16.

Fig. 8. Vehicle running status at the first time on electronic computer.

Fig. 9. Vehicle running status at the first time on the TOC.

in Fig. 10, and the corresponding calculation result on the TOC is as

shown in Fig. 11.

Fig. 11. Vehicle running status at the second time on the TOC.

It can be seen that the result values are from the 59th to 67th

bits on the liquid crystal board, and the result is displayed from the

Fig. 10. Vehicle running status at the second time on electronic computer.

6



S. Zhang, Y. Shen and Zhao Z. Optics Communications 470 (2020) 125750

Fig. 12. Vehicle running status at the third time on the TOC.

Fig. 13. Vehicle running status on the fourth time on the TOC.

high to the low. It can be seen from Fig. 10 that the result value is
(0000001u0)MSD = 2. At this time, the calculation result of the first
adder is (00000010u)MSD = 3, and the calculation result is correct.

When time 𝑡 is 2, no new vehicle appears, at which time the vehicle
1 and the vehicle 2 are also corresponding to the adder 1 and the adder
2. The position X11(1) of the vehicle 2 is 2 at time 1, the speed V11(1) is
3. At this time, the augend of the adder for the second vehicle is 2, the
addend is 3. The augend of the adder for the first vehicle is 3, V31(1)
is 3 after the speed being accelerated. The augends and addends of the
other three adders are all 0. That is, at this time, the input data 𝑎 of the
five adders at the third time are 3, 2, 0, 0, 0 respectively, the input data
𝑏 is 3, 3, 0, 0, 0 respectively. The screenshot on liquid crystal board at
the next moment is shown in Fig. 12.

As can be seen from Fig. 12, the result of the second adder is
(0000011u)MSD = 5. The result of the first adder is (000000110)MSD =
6, and the calculation result is correct.

When time 𝑡 is 3, the third car is randomly generated, the dis-
placement 𝑎 is 0, the speed 𝑏 is 1. At this time, it is assigned a third
adder. Similarly, the input data 𝑎 of the five adders are 6, 5, 0, 0, 0
respectively, the input data 𝑏 is 3, 2, 1, 0, 0 respectively. The screenshot
on liquid crystal board at the next moment is shown in Fig. 13.

It can be seen that the result values of the third adder are from
the 93rd to 101st bits on the liquid crystal board. As can be seen from
Fig. 13, the results of the third adder is (00000001u)MSD = 1, the results
of the second adder is (00000100u)MSD = 7, and the results of the first
adder is (00000101u)MSD = 9. These calculation values are correct.

When time 𝑡 is 4, the fourth car is randomly generated, the displace-
ment 𝑎 is 0, and the speed 𝑏 is 2. At that moment, it is assigned the
4th adder. Similarly, the input data 𝑎 of the five adders are 9, 7, 1, 0, 0
respectively, the input data 𝑏 is 3, 2, 1, 2, 0 respectively. The screenshot
on the TOC at the next moment is shown in Fig. 14.

It can be seen that the result values of the third adder are from the
127th to 135th bits on the liquid crystal board. As can be seen from
Fig. 14, the results of the fourth adder is (0000001u0)MSD = 2, the
results of the third adder is (000000010)MSD = 2, the results of the
second adder is (00000101u)MSD = 9, and the results of the first adder
is (00001u100)MSD = 12. These calculation values are correct.

When time 𝑡 is 5, the fifth car is randomly generated, the displace-
ment 𝑎 is 0, the speed 𝑏 is 1, and the fifth adder is assigned to it at this

Fig. 14. Vehicle running status on the fifth time on the TOC.

Fig. 15. Vehicle running status on the sixth time on the TOC.

time. Similarly, the input data 𝑎 of the five adders are 12, 9, 2, 2, 0
respectively, the input data 𝑏 is 4, 3, 1, 2, 1 respectively. The calculation
result screenshot on the TOC at the next moment is shown in Fig. 15.

It can be seen that the result values of the third adder are from
the 161st to 169th bits on the liquid crystal board. As can be seen
from Fig. 15, the results of the fifth adder is (00000001u)MSD = 1,
the results of the fourth adder is (000000100)MSD = 4, the results
of the third adder is (00000010u)MSD = 3, the results of the second
adder is (00001u100)MSD = 12, and the results of the first adder is
(000010000)MSD = 16. These calculation values are consistent with
theoretical calculations.

For the 6th, 7th, . . . , cars that are randomly generated later, the new
position information is calculated on the TOC according to the similar
way above for every 5 cars, and the liquid crystal board will have multi-
screen output. From the experimental results, the calculation result of
each screen of the TOC are consistent with the theoretical calculation
values.

6. Conclusion

In this paper, a three-lane CA traffic flow model is designed and
implemented in ternary optical computer SD16 using the characteristics
of many processor bits, reconfigurability of processor bit and parallel
computing of each processor bit. The specific implementation steps of
the model on the TOC are introduced in detail. In this experiment, many
vehicles are randomly generated, and their positions are determined
by the five MSD adders in parallel. It shows that the system can run
successfully and the results are the same as on electronic computer.
The experiment verifies the correctness of the proposed model and the
feasibility of the implementation method. It shows that the application
of the cellular automaton on the TOC has obvious advantages.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

7



S. Zhang, Y. Shen and Zhao Z. Optics Communications 470 (2020) 125750

Acknowledgments

Thank Prof. Jin Yi, Prof. Peng Junjie, Ouyang Shan and all members
of TOC team for their kind help and valuable discussions in preparing
the paper.

This work is supported by National Key R&D Program of China (No.
2017YFE0117500), and National Natural Science Foundation of China
(No. 61572305, 61672006).

References

[1] John von Neumann, Design of computers theory of automata and numerical
analysis, in: A.H. Taub (Ed.), John Von Neumann: Collected Works, Pergamon
Press, Oxford, 1963.

[2] M. Cremer, J. Ludwig, A fast simulation model for traffic flow on the basis of
Boolean operations, Math. Comput. Simulation 28 (4) (1986) 297–303.

[3] S. Wolfram, Statistical mechanics of cellular automata, Rev. Modern Phys. 55
(1983) 601–644.

[4] S. Wolfram, Theory and applications of cellular automata, in: Theory and
Applications of Cellular Automata, World scientific, 1986, pp. 1346–1357.

[5] K. Nagel, Schreckenberg M., A cellular automaton model for freeway traffic, J.
Physique (2) (1992) 2221–2229 (In France).

[6] X. Zhang, H. Li, K. Wang, et al., Quantum computation based on semiconductor
quantum dots, Sci. China Inf. Sci. 47 (10) (2017) 1255–1276.

[7] Philip Ball, The Era of Quantum Computing Is Here, Outlook: Cloudy,
Quanta Magazine, 2018, https://www.quantamagazine.org/the-era-of-quantum-
computing-is-here-outlook-cloudy-20180124/, [OL].

[8] J. Xu, Probe machine, IEEE Trans. Neural Netw. Learn. Syst. 27 (7) (2016)
1405–1416.

[9] Y. Jin, H. He, Y. Lü, The basic principle of ternary optical computer, Sci. China
E 33 (1) (2003) 111–115, 2.

[10] Y. Jin, H. He, Y. L.V., Ternary optical computer architecture, Phys. Scr. (T118)
(2005) 98–101, 7.

[11] Y. Jin, H. He, Y. Lü, Ternary optical computer principle, Sci. China Inf. Sci. 46
(2) (2003) 145–150.

[12] Y. Jin, Y. Shen, J. Peng, S. Xu, et al., Principles and construction of MSD adder
in ternary optical computer, Sci. China F 53 (11) (2010) 2159–2168, 11.

[13] Y. Jin, Draw near optical computer, J. Shanghai Univ. Nat. Sci. 17 (4) (2011)
401–411, 8.

[14] Y. Jin, X. Wang, J. Peng, M. Li, Z. Shen, S. Ouyang, Vector-matrix multiplication
in ternary optimal computer, Int. J. Numer. Anal. Model. 9 (2) (2012) 401–409.

[15] J. Peng, M. Li, S. Ouyang, X. Wang, Z. Shen, Carry-free vector-matrix multiplica-
tion on a dynamically reconfigurable optical platform, Appl. Opt. 49 (12) (2010)
2352–2362.

[16] J. Jiang, Y. Shen, et al., Design and implementation of parallel SRT integer
divider in ternary optical computer (in Chinese), Sci. Sin. Inform. (2020) http:
//dx.doi.org/10.1360/SSI-2019-0240, (in press).

[17] J. Peng, X. Wei, X. Zhang, et.al, Implementation of parallel FFT algorithm on
ternary optical computer, Sci. China Inf. 47 (7) (2017) 846–862.

[18] J. Peng, Y. Fu, X. Zhang, et.al, Implementation of DFT application on ternary
optical computer, Opt. Commun. 410 (2018) 424–430.

[19] J. Jiang, X. Zhang, Y. Shen, et.al, Design and implementation of SJ-MSD adder
in ternary optical computer, J. Electron. (2019) in press, Manuscript number:
C180572 (In Chinese).

[20] M. Rickert, K. Nagel, M. Schreckenberg, et al., Two lane traffic simulation using
cellular automata, Physica A 231 (1996) 534–553.

[21] P. Wagner, N. Kai, D.E. Wolf, Realistic multi-lane traffic rules for cellular
automata, Physica A 234 (34) (1997) 687–698.

[22] A. Ebersbach, J. Schneider, I. Morgenstern, Simulating traffic on German high-
ways based on the Nagel-Scherckenberg-model, Internat. J. Modern Phys. C 12
(7) (2001) 1081–1089.

[23] S. Zhang, J. Peng, Y. Shen, et.al, Programming model and implementation
mechanism for ternary optical computer, Opt. Commun. 428 (2018) 26–34.

[24] S. Zhang, Y. Jin, Y. Shen, J. Peng, et al., Overview of the task management
system of ternary optical computer, in: The 2016 IEEE Cyber Science and
Technology Congress, CyberSciTech 2016. 2016, pp. 132–135.

[25] Y. Jin, S. Zhang, S. Li, et al., Computing - data file — The key technology of
applying ternary optical computer, J. Shanghai Jiaotong Univ. Nat. Sci. 53 (5)
(2019) 584–592.

8

http://refhub.elsevier.com/S0030-4018(20)30282-0/sb1
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb1
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb1
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb1
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb1
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb2
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb2
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb2
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb3
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb3
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb3
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb4
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb4
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb4
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb5
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb5
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb5
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb6
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb6
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb6
https://www.quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/
https://www.quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/
https://www.quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb8
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb8
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb8
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb9
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb9
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb9
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb10
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb10
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb10
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb11
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb11
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb11
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb12
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb12
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb12
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb13
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb13
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb13
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb14
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb14
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb14
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb15
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb15
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb15
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb15
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb15
http://dx.doi.org/10.1360/SSI-2019-0240
http://dx.doi.org/10.1360/SSI-2019-0240
http://dx.doi.org/10.1360/SSI-2019-0240
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb17
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb17
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb17
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb18
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb18
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb18
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb19
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb19
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb19
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb19
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb19
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb20
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb20
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb20
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb21
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb21
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb21
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb22
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb22
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb22
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb22
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb22
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb23
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb23
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb23
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb25
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb25
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb25
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb25
http://refhub.elsevier.com/S0030-4018(20)30282-0/sb25

	Design and implementation of a three-lane CA Traffic Flow model on ternary optical computer
	Introduction
	The related theory of CA and the TOC
	Cellular automata
	The principle of SJ-MSD adder

	Three-lane CA traffic flow model
	Algorithm design of three-lane traffic flow on the TOC 
	Three-lane traffic flow design based on the TOC
	Implementation process of three-lane traffic flow on a ternary optical processor

	Implementation and analysis of three-lane traffic flow problem on SD16
	Brief introduction to SD16
	Implementation of an instance on SD16
	Experimental results and analysis

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


